skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Guangyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers. 
    more » « less
  3. Abstract

    This research provides a new method for preparing nanoparticle‐coated viscose nonwoven fabrics, which has broad application prospects in the functional fiber industry. In this work amino‐terminated hyperbranched polymer (HBP)‐capped Selenium nanoparticles (Se NPs) were synthesized for coating viscose nonwoven fabric (VNF) via impregnation method to produce a controllable and uniform Se NPs coating on the viscose fiber surface. The prepared Se NPs and the treated VNF were characterized by the transmission electron microscope (TEM), x‐ray diffraction (XRD), x‐ray photoelectron spectroscopy (XPS), field emission scanning electron microcopy (FE‐SEM), and antibacterial measurement. The results indicate that the Se NPs were spherical shaped with an average size of 50 nm. FESEM, XRD, and XPS characterizations demonstrated that Se NPs can adsorbed and distributed uniformly on the fiber surface. Se NPs‐coated VNF showed above 99.9% bacterial reduction ofStaphylococcus aureusandEscherichia coliwhile the Se element content on VNF was about 2.92 mg/g.

     
    more » « less